MECÁNICA CLÁSICA

M1. Considera dos partículas puntuales de masas m_1 y m_2 en movimiento orbital regido por la fuerza gravitacional newtoniana. La ecuación de movimiento para el radio orbital r del sistema es

$$\frac{1}{2}\mu \dot{r}^2 + V_{\text{eff}}(r) = E , \qquad (1)$$

donde $\mu := m_1 m_2/(m_1 + m_2)$ es la masa reducida, E es la energía mecánica total y V_{eff} es el potencial efectivo dado por

$$V_{\text{eff}}(r) = \frac{\ell^2}{2\mu r^2} - \frac{Gm_1m_2}{r} , \qquad (2)$$

con $\ell = \mu r^2 \dot{\varphi}$ el momento angular del sistema, φ el desplazamiento angular y G la constante de Newton. Los puntos denotan derivadas temporales.

- a) [1 punto] Dibuja una gráfica cualitativa del potencial efectivo $V_{\rm eff}(r)$.
- b) [1 punto] Calcula el radio correspondiente al estado de equilibrio estable del sistema y señálalo en el dibujo del inciso a).
- c) [1 punto] Considera una órbita no acotada con energía E_1 . ¿Existen puntos de retorno? En caso afirmativo, señálalos en el dibujo del inciso a) y calcula su radio correspondiente.
- d) [1 punto] Dibuja una gráfica cualitativa del potencial efectivo $V_{\rm eff}(r)$ en el caso especial en que no hay momento angular.
- e) [1 punto] En el caso del inciso d), considera una órbita con energía negativa E_2 y velocidad radial inicial positiva. Describe la trayectoria de las partículas.

La sección de Mecánica Clásica continúa en la siguiente página.

- M2. Una varilla unidimensional de longitud L y masa uniformemente distribuida m se encuentra sostenida en posición vertical sobre una mesa. Al soltar la varilla, ésta alcanza una posición horizontal sobre la mesa. Ver la figura 1.
 - a) [1 punto] Muestra que la energía potencial gravitacional de la varilla respecto a la superficie de la mesa es mqL/2.

Muestra que, al momento de alcanzar la posición horizontal,

- b) [1 punto] La rapidez angular de la varilla es $\sqrt{3g/L}$.
- c) [1 punto] La magnitud de su aceleración angular es 3g/(2L).
- d) [1 punto] La magnitud de la aceleración tangencial del centro de masa de la varilla es 3g/4.
- e) [1 punto] La magnitud de la aceleración radial del centro de masa es 3g/2.

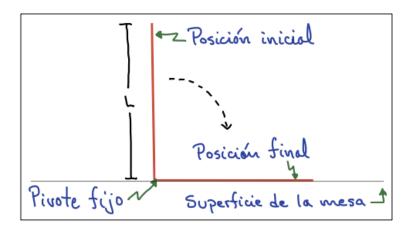


Figura 1: Esquema del problema M2.

MECÁNICA CUÁNTICA

C1. Una partícula de masa m está confinada a una caja de potencial unidimensional infinita en la región $0 \le x \le a$ (el potencial es cero en esta región e infinito fuera de la misma). Las eigenfunciones normalizadas del hamiltoniano para este potencial en dicha región son:

$$\phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right).$$

- a) [1 punto] Encuentra los valores que puede tomar la energía de la partícula.
- b) [2 puntos] Al tiempo t = 0 la función de onda normalizada de la partícula está dada por:

$$\psi(x, t = 0) = \sqrt{\frac{8}{5a}} \left[1 + \cos\left(\frac{\pi x}{a}\right) \right] \sin(\pi x/a).$$

Si se midiera la energía en t=0, ¿cual sería la probabilidad de encontrar a la partícula con una energía igual a

$$\frac{2\pi^2\hbar^2}{ma^2}?$$

- c) [2 puntos] Encuentra la función de onda al tiempo t > 0.
- C2. Un estado $|\psi\rangle$ es eigenestado de $\hat{\mathbf{L}}^2$ y \hat{L}_z .
 - a) [2 puntos] Para este estado, calcula $\langle \hat{L}_x \rangle$.
 - b) [1 punto] Calcula también $\langle \hat{L}_x^2 + \hat{L}_y^2 \rangle$.
- C3. [1 punto] Los eigenestados del oscilador armónico en términos de los operadores de escalera están dados por la expresión $|n\rangle = \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger}\right)^n |0\rangle$. Encuentra $\hat{a} |n\rangle$, expresando tu resultado final explícitamente en términos de la base $\{|n\rangle\}$.
- C4. [1 punto] Para una partícula de espín 1/2, los operadores de escalera están dados en términos de los operadores de espín \hat{S}_x y \hat{S}_y por $\hat{S}_{\pm} = \hat{S}_x \pm i\hat{S}_y$. La acción de estos operadores sobre los eigenestados de \hat{S}_z es:

$$\hat{S}_{+}\left|-\right\rangle = \hbar\left|+\right\rangle, \qquad \hat{S}_{+}\left|+\right\rangle = 0.$$

$$\hat{S}_{-}\left|+\right\rangle = \hbar\left|-\right\rangle, \qquad \hat{S}_{-}\left|-\right\rangle = 0.$$

Usando esta información, encuentra un eigenestado normalizado (escrito en la base de eigenestados de \hat{S}_z) del operador \hat{S}_x con eigenvalor $\hbar/2$.

ELECTROMAGNETISMO

- E1. Una espira cuadrada de lado b yace a una distancia s de un cable infinito que porta corriente estacionaria I, como lo muestra la Figura 1.
 - a) [2 puntos] Encuentra el flujo del campo magnético B en la espira.
 - b) [2 puntos] Si se jala la espira en dirección de la separación y alejándola del cable a una velocidad v, ¿qué FEM se genera? ¿Y en qué dirección, sentido horario o antihorario, fluye la corriente en la espira?
 - d) [1 punto] ¿Qué corriente fluye si la espira es desplazada paralela al cable a velocidad v?

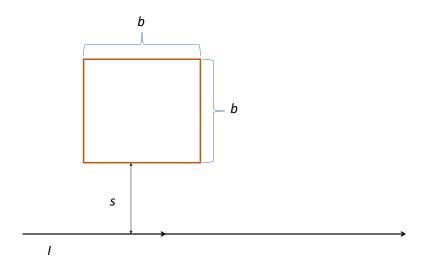


Figura 2: Corriente inducida en espira cuadrada.

- E2. a) [2 puntos] Escribe la parte real del campo eléctrico \mathbf{E} y el campo magnético \mathbf{B} de una onda monocromática plana de amplitud E_0 , frecuencia ω y ángulo fase π que está viajando en la dirección negativa de x y cuya polarización se encuentra en la dirección y.
 - b) [2 puntos] Calcula la densidad del flujo de energía (por unidad de área y por unidad de tiempo) transportado por los campos. ¿Cómo se denomina esta cantidad?
 - c) [1 punto] Muestra en un dibujo esquemático, en el espacio cartesiano y con los tres ejes bien definidos, la forma de la onda.

TERMODINÁMICA

- T1. Un objeto con capacidad calorífica constante C_p y temperatura T_i es puesto en contacto con un reservorio de calor a temperatura T_f . Eventualmente, se establece el equilibrio a presión constante entre el objeto y el reservorio.
 - a) [2 puntos] Determina el cambio de entropía del objeto.
 - b) [2 puntos] Determina el cambio de entropía del reservorio.
 - c) [3 puntos] Discute el signo del cambio de entropía total (objeto + reservorio) para los casos en los que T_f es muy cercano a T_i , siendo un poco mayor o un poco menor. Nota: Para valores de x cercanos a 1, $\ln x \approx (x-1) \frac{1}{2}(x-1)^2$.
- T2. [3 puntos] A presión atmosférica, el plomo se funde a 600 K, su densidad decrece de 11.01 a 10.65 g/cm^3 , y el calor latente de fusión ΔH es 24.5 J/g. ¿Cuál será la temperatura de fusión a una presión 100 veces mayor? Nota: 1 atm = $1.01 \times 10^5 \text{ Pa}$, con 1 Pa = 1 N/m².

FÍSICA MODERNA (Maestría en Física)

- F1. El muón es una partícula inestable que se desintegra espontáneamente en un electrón y dos neutrinos. La vida media de los muones es $\tau = 2.2 \times 10^{-6} \, \mathrm{s}$.
 - a) [1 punto] Si el número de muones en t = 0 es N_0 , ¿cuál es el número en un instante t posterior?
 - b) [2 puntos] Supón que los muones se desplazan a una velocidad de 0.95c y que en t=0 hay 5×10^4 muones. ¿Cuál es la vida media observada de los muones?
 - c) [2 puntos] ¿Cuántos muones quedan después de recorrer una distancia de 2 km?
- F2. [2 puntos] Un átomo de hidrógeno se encuentra en el estado 4p. ¿A qué estado o estados puede ir, emitiendo un fotón en una transición permitida?
- F3. ¿Cuáles de las siguientes reacciones pueden ocurrir? En caso de que alguna no sea posible, indica las leyes de conservación que son violadas.
 - a) [1 punto] $\Lambda^0 \longrightarrow \pi^- + \pi^+$
 - b) [1 punto] $p + p \longrightarrow p + \Lambda^0 + \Sigma^+$
 - c) [1 punto] $e^+ + e^+ \longrightarrow p + \pi^+ + \Lambda^0 + K^0$.

FÍSICA MODERNA (Maestría en Física Médica)

- F1. [3 puntos] Se tiene una muestra que contiene 10^6 núcleos radiactivos. Después de 2.0 horas quedan 2.5×10^5 núcleos. ¿Cuántos núcleos esperas encontrar a las 6.0 horas de iniciada la observación?
 - a) 2.5×10^4 .
 - b) 0.
 - c) 1.56×10^4 .
 - d) 8.33×10^4 .
 - e) 3.12×10^4 .
- F2. [2 puntos] Indica si la afirmación es verdadera (V) o falsa (F):
 - a) El decaimiento alfa mantiene constante el número de nucleones en un núcleo.
 - b)La regla de Geiger Nutall correlaciona la vida media de un núcleo emisor alfa con la masa del núcleo padre.
 - c) En el decaimiento alfa, la partícula alfa y el núcleo hija comparten en partes iguales el valor Q de la reacción.
 - d) El espectro de las partículas alfa es discreto, con energía igual al valor Q de la reacción.
 - e) El modelo cuántico del decaimiento alfa toma en cuenta la probabilidad de atravesar una barrera de potencial clásicamente prohibida.
 - f) El modelo cuántico del decaimiento alfa es un avance reciente de la física nuclear, contemporáneo con el descubrimiento de los quarks.
- F3. [1 punto] Selecciona la respuesta correcta.

Los rayos X y rayos gamma, al atravesar unos milímetros de agua,

- a) mantienen su intensidad constante y la energía diminuye exponencialmente.
- b) aumentan su intensidad exponencialmente.
- c) disminuyen su intensidad exponencialmente.
- d) llegan hasta su máximo alcance (o rango).
- e) ninguna de las anteriores.
- F4. [1 punto] Un núcleo atómico típico mide del orden de:
 - a) 10^{-10} m
 - b) 10^{-10} cm
 - c) 10^{-23} cm
 - d) 10^{-15} m
 - e) 10^{-15} cm
- F5. [3 puntos] A partir de las leyes de conservación de energía y de conservación de momento lineal, deduce la relación entre la energía cinética K_{α} y el valor Q de la reacción del decaimiento alfa. Supón que el núcleo original se encuentra en resposo antes de decaer.